Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138993

RESUMO

Verticillium wilt is a soil-borne vascular disease caused by the fungal pathogen Verticillium dahliae. It causes great harm to upland cotton (Gossypium hirsutum) yield and quality. A previous study has shown that Hen egg white lysozyme (HEWL) exerts strong inhibitory activity against V. dahliae in vitro. In the current study, we introduced the HEWL gene into cotton through the Agrobacterium-mediated transformation, and the exogenous HEWL protein was successfully expressed in cotton. Our study revealed that HEWL was able to significantly inhibit the proliferation of V. dahlia in cotton. Consequently, the overexpression of HEWL effectively improved the resistance to Verticillium wilt in transgenic cotton. In addition, ROS accumulation and NO content increased rapidly after the V. dahliae inoculation of plant leaves overexpressing HEWL. In addition, the expression of the PR genes was significantly up-regulated. Taken together, our results suggest that HEWL significantly improves resistance to Verticillium wilt by inhibiting the growth of pathogenic fungus, triggering ROS burst, and activating PR genes expression in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Verticillium/metabolismo , Muramidase/metabolismo , Clara de Ovo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
PLoS One ; 18(8): e0290556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616286

RESUMO

Chemical nitrogen fertilizer can maintain crop productivity, but overuse of chemical nitrogen fertilizers leads to economic costs and environmental pollution. One approach to reduce use of nitrogen fertilizers is to transfer nitrogenase biosynthetic pathway to non-legume plants. Fe protein encoded by nifH and MoFe protein encoded by nifD and nifK are two structural components of nitrogenase. NifB encoded by nifB is a critical maturase that catalyzes the first committed step in the biosynthesis of nitrogenase FeMo-cofactor that binds and reduces N2. Expression of the nifB, nifH, nifD and nifK is essential to generate plants that are able to fix atmospheric N2. In this study, the four genes (nifB, nifH, nifD and nifK) from Paenibacillu polymyxaWLY78 were assembled in plant expression vector pCAMBIA1301 via Cre/LoxP recombination system, yielding the recombinant expression vector pCAMBIA1301-nifBHDK. Then, the four nif genes carried in the expression vector were co-introduced into upland cotton R15 using Agrobacterium tumefaciens-mediated transformation. Homozygous transgenic cotton lines B2, B5 and B17 of T3 generation were selected by PCR and RT-PCR. qRT-PCR showed that nifB, nifH, nifD and nifK were co-expressed in the transgenic cottons at similar levels. Western blotting analysis demonstrated that NifB, NifH, NifD and NifK were co-produced in the transgenic cottons. Co-expression of the four critical Nif proteins (NifB, NifH, NifD and NifK) in cottons represents an important step in engineering nitrogenase biosynthetic pathway to non-legume plants.


Assuntos
Gossypium , Nitrogenase , Gossypium/genética , Nitrogenase/genética , Fertilizantes , Agrobacterium tumefaciens , Nitrogênio
3.
Microorganisms ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317226

RESUMO

Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and ß-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.

4.
Life (Basel) ; 13(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109514

RESUMO

DSPAα1 is a potent rude thrombolytic protein with high medicative value. DSPAα1 has two natural N-glycan sites (N153Q-S154-S155, N398Q-K399-T400) that may lead to immune responses when administered in vivo. We aimed to study the effect of its N-glycosylation sites on DSPAα1 in vitro and in vivo by mutating these N-glycosylation sites. In this experiment, four single mutants and one double mutant were predicted and expressed in Pichia pastoris. When the N398Q-K399-T400 site was mutated, the fibrinolytic activity of the mutant was reduced by 75%. When the N153Q-S154-S155 sites were inactivated as described above, the plasminogen activating activity of its mutant was reduced by 40%, and fibrin selectivity was significantly reduced by 21-fold. The introduction of N-glycosylation on N184-G185-A186T and K368N-S369-S370 also considerably reduced the activity and fibrin selectivity of DSPAα1. The pH tolerance and thermotolerance of all mutants did not change significantly. In vivo experiments also confirmed that N-glycosylation mutations can reduce the safety of DSPAα1, lead to prolonged bleeding time, non-physiological reduction of coagulation factor (α2-AP, PAI) concentration, and increase the risk of irregular bleeding. This study ultimately demonstrated the effect of N-glycosylation mutations on the activity and safety of DSPAα1.

5.
Curr Issues Mol Biol ; 44(9): 3930-3947, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135182

RESUMO

Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.

6.
Microb Cell Fact ; 21(1): 177, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042512

RESUMO

BACKGROUND: N-glycosylation is one of the most important post-translational modifications. Many studies have shown that N-glycosylation has a significant effect on the secretion level of heterologous glycoproteins in yeast cells. However, there have been few studies reporting a clear and unified explanation for the intracellular mechanism that N-glycosylation affect the secretion of heterologous glycoproteins so far. Pichia pastoris is an important microbial cell factory producing heterologous protein. It is of great significance to study the effect of N-glycosylation on the secretion level of heterologous protein. Camel chymosin is a glycoprotein with higher application potential in cheese manufacturing industry. We have expressed camel prochymosin in P. pastoris GS115, but the lower secretion level limits its industrial application. This study attempts to increase the secretion level of prochymosin through N-glycosylation, and explore the molecular mechanism of N-glycosylation affecting secretion. RESULTS: Adding an N-glycosylation site at the 34th amino acid of the propeptide of prochymosin significantly increased its secretion in P. pastoris. N-glycosylation improved the thermostability of prochymosin without affecting the enzymatic activity. Immunoprecipitation coupled to mass spectrometry (IP-MS) analysis showed that compared with the wild prochymosin (chy), the number of proteins interacting with N-glycosylated mutant (chy34) decreased, and all differential interacting proteins (DIPs) were down-regulated in chy34-GS115 cell. The DIPs in endoplasmic reticulum were mainly concentrated in the misfolded protein pathway. Among the five DIPs in this pathway, overexpression of BiP significantly increased the secretion of chy. The knockout of the possible misfolded protein recognition elements, UDP-glycose:glycoprotein glucosyltransferase 1 and 2 (UGGT1/2) had no effect on the growth of yeast cells and the secretion of prochymosin. CONCLUSIONS: In conclusion, N-glycosylation increased the secretion of prochymosin in P. pastoris trough the adjustment of intracellular interacted proteins. The results of our study may help to elucidate the molecular mechanism of N-glycosylation affecting secretion and provide a new research method to improve the secretion of heterologous glycoprotein in P. pastoris.


Assuntos
Quimosina , Pichia , Animais , Camelus/metabolismo , Quimosina/química , Quimosina/genética , Precursores Enzimáticos , Glicoproteínas/química , Glicosilação , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales
7.
Am J Transl Res ; 14(5): 3261-3268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702107

RESUMO

OBJECTIVE: To explore the efficacy of arthroscopic-assisted reduction and internal fixation (ARIF) and traditional open reduction and internal fixation in the treatment of talus fractures. METHODS: This study retrospectively analyzed the clinical data of 92 patients with talus fractures admitted to our hospital. The patients were divided into a control group (treated with traditional open reduction and internal fixation) and a research group (with ARIF) with 46 cases in each. The operation indices, the score of the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scoring System (AOFAS-AH), callus growth score, pain score, treatment effect, complications and quality of life score were compared between the two groups. RESULTS: The research group showed shorter time of fracture healing, hospitalization and less intraoperative blood loss than the control group (all P<0.001). The ankle-hindfoot score in the research group was higher than those in the control group 3 and 6 months after surgery (both P<0.001). The excellent and good rate of treatment in the research group (93.48%) was higher than that in the control group (78.26%; P<0.05). Compared with the control group, the VAS score was lower and the callus growth score was higher in the research group at 1st, 3rd and 6th month after surgery (all P<0.01). The incidence of complications in the research group (2.17%) was lower than that in the control group (13.04%; P<0.05). Six months after surgery, the SF-36 score increased compared with that before surgery, with higher parameters in the research group than in the control group (P<0.001). CONCLUSION: ARIF is more effective than traditional open reduction and internal fixation in treating talus fractures, with less complications and higher safety.

8.
J Orthop Surg Res ; 16(1): 645, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717683

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common aggressive bone tumor in children and teenagers. Doxorubicin (DOX) is a chemotherapeutic drug for OS. This study aims to reveal the effects and underneath mechanism of DOX treatment in OS progression. METHODS: The expression of circular_0000006 (circ_0000006), microRNA-646 (miR-646) and brain-derived neurotrophic factor (BDNF) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). BDNF protein expression was determined by western blot. Cell proliferation was illustrated by cell counting kit-8 (CCK-8) and cell colony formation assays. Cell migration and invasion were revealed by transwell migration and wound-healing assays and transwell invasion assay, respectively. Cell apoptosis was demonstrated by flow cytometry analysis. The binding relationship of miR-646 and circ_0000006 or BDNF was predicted by circRNA interactome and targetscan online database, respectively, and verified by dual-luciferase reporter assay. The effects of circ_0000006 knockdown on tumor growth in vivo were manifested by in vivo tumor formation assay. RESULTS: Circ_0000006 expression and the mRNA and protein levels of BDNF were dramatically upregulated, and miR-646 expression was effectively downregulated in OS tissues or cells compared with control groups. Circ_0000006 expression and BDNF protein expression were lower, and miR-646 expression was higher in DOX treatment groups than in control groups in OS cells. Circ_0000006 knockdown repressed cell proliferation, migration and invasion, whereas promoted cell apoptosis under DOX treatment in OS cells; however, these effects were attenuated by miR-646 inhibitor. Additionally, circ_0000006 sponged miR-646 to bind to BDNF. Circ_0000006 silencing suppressed tumor growth in vivo. CONCLUSION: Circ_0000006 knockdown promoted DOX-mediated effects on OS development by miR-646/BDNF pathway, which provided a theoretical basis in treating OS with DOX.


Assuntos
Osteossarcoma , Fator Neurotrófico Derivado do Encéfalo/genética , Progressão da Doença , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , RNA Circular
9.
Plant Mol Biol ; 102(4-5): 553-567, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989373

RESUMO

KEY MESSAGE: Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression of stress-related genes, and improved regulation of metabolic pathways, such as the SOS pathway. Drought and salinity are major abiotic stressors which negatively impact cotton yield under field conditions. Here, a plasma membrane Na+/H+ antiporter gene, K2-NhaD, was introduced into upland cotton R15 using an Agrobacterium tumefaciens-mediated transformation system. Homozygous transgenic lines K9, K17, and K22 were identified by PCR and glyphosate-resistance. TAIL-PCR confirmed that T-DNA carrying the K2-NhaD gene in transgenic lines K9, K17 and K22 was inserted into chromosome 3, 19 and 12 of the cotton genome, respectively. Overexpression of K2-NhaD in transgenic cotton plants grown in greenhouse conditions and subjected to drought and salinity stress resulted in significantly higher relative water content, chlorophyll, soluble sugar, proline levels, and SOD, CAT, and POD activity, relative to non-transgenic plants. The expression of stress-related genes was significantly upregulated, and this resulted in improved regulation of metabolic pathways, such as the salt overly sensitive pathway. K2-NhaD transgenic plants growing under field conditions displayed strong salinity and drought tolerance, especially at high levels of soil salinity and drought. Seed cotton yields in transgenic line were significantly higher than in wild-type plants. In conclusion, the data indicate that K2-NhaD transgenic lines have great potential for the production of stress-tolerant cotton under field conditions.


Assuntos
Gossypium/metabolismo , Proteínas de Plantas/fisiologia , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/fisiologia , Secas , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico , Água/metabolismo
10.
Protein Expr Purif ; 166: 105503, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31550499

RESUMO

The N-glycosylation process that occurs in the Pichia pastoris protein expression system can have a significant effect on the yield of heterologous glycoproteins secreted from the yeast. The basis of the effect of N-glycosylation on yield, however, has not been elucidated. In order to investigate the effect of N-glycosylation on heterologous protein production, site-directed mutation was performed on five potential N-glycosylation sites of the tetanus toxin fragment C (TetC). Unaltered TetC (wild-TetC) and eight mutants, in which different numbers and locations of N-glycosylation sites were altered, were expressed in P. pastoris GS115. The recombinant target proteins presented different levels of N-glycosylation. The wild Tet-C and 4 mutations sites of putative N-glycosylation (4Gly mutant: N280Q) had the highest level of secreted protein, while 1 mutation of putative N-glycosylation sites (1Gly mutant: N39/64/85/205Q) had the highest level of intracellular, non-secreted heterologous protein. Reducing the number of native N-glycosylation sites decreased the level of glycosylation, as well as the level of secretion. Introduction of a N-glycosylation site at position 320, however, also reduced the level of expression and secretion of recombinant protein. These results indicate that the number and location of N-glycosylation sites jointly have an effect on the expression and secretion of heterologous glycoproteins in P. pastoris.


Assuntos
Glicoproteínas/genética , Fragmentos de Peptídeos/genética , Pichia/genética , Proteínas Recombinantes/genética , Toxina Tetânica/genética , Sequência de Aminoácidos , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Glicoproteínas/química , Glicosilação , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Pichia/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Toxina Tetânica/química , Transfecção
11.
Artigo em Inglês | MEDLINE | ID: mdl-28932252

RESUMO

Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 39(3): 324-329, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695801

RESUMO

Objective To establish type 2 diabetes mellitus(T2DM)KM mouse models via the combined use of high-calorie diet and multiple administration of low-dose streptozotocin(STZ). Methods Based on the randomized number table,30 KM mice were equally and randomly divided into 2 groups:modeling group and control group. Mice in the modeling group were given foods with high calories for one month and injected with 30 mg/kg STZ via the left lower abdominal cavity for 2-4 consecutive days,while mice in the control group were fed with standard maintenance foods and the same dose of citrate buffer solution. The general conditions including food and water intake and mice weight were recorded. Blood glucose level was measured 1,2,4,5,12,and 21 weeks after STZ injection. When the glucose level became stabilized,the serum insulin and blood lipids [including total cholesterol(TC),triacylglycerol(TG),high-density lipoprotein(HDL) and low-density lipoprotein(LDL)],and hemoglobin a1c (HbA1c)were measured,and oral glucose tolerance test were performed. Results The modeling group had a 100% survival rate. After STZ injection,the body weight of mice in the modeling group reached the peak in the forth week,and later the growth rate decreased,still significantly lower than that of control group mice till the 21st week(t=3.160,P=0.006). Their blood glucose level was significantly higher than that of mice before STZ injection and in the control group(all P<0.05);as time went on,it was also rising,and it remained high till the 21st week [(26.38±1.34)mmol/L]. In the 4th week,the fasting blood glucose of mice in the modeling group was(11.86±3.33)mmol/L,which was significantly higher than that of mice in the control group [(6.37±1.27)mmol/L](t=-3.830,P=0.002). Fasting serum insulin of mice in the modeling group showed no significant difference compared with control group [(5.73±0.24)mU/L vs.(5.48±0.32)mU/L;t=-0.863,P=0.416]. Insulin sensitivity index was 0.0145±0.0039,which was significantly lower than that(0.0267±0.0039)in control group(t=4.414,P=0.003). In the 6th week,the blood glucose levels of mice in the modeling group were(15.35±1.82),(26.45±1.07),(25.58±1.46),and(26.15±1.00)mmol/L 0,30,60,and 120 min after oral gavage of D-glucose,which were all significantly higher than those in the control group [(6.88±1.75)(t=-8.203,P=0.000),(17.65±2.94)(t=-6.884,P=0.000),(13.18±2.04)(t=-12.110,P=0.000),and(7.37±3.40)mmol/L(t=-12.969,P=0.000)]. In the 8th week,serum TC and TG levels of mice in the modeling group were(3.83±0.06)and(2.20±0.20)mmol/L,which were significantly higher than those in the control group [(3.10±0.10)(t=11.000,P=0.000)and(0.90±0.10)mmol/L(t=10.070,P=0.000)]. HDL level of mice in the modeling group was(2.03±0.06)mmol/L,which was significantly lower than that in the control group [(2.48±0.02)mmol/L;t=11.662,P=0.000]. LDL level was increased but showed no significant difference [(0.34±0.08)mmol/L vs.(0.26±0.02)mmol/L](t=1.680,P=0.168). HbA1c content of mice in the modeling group was(7.30±0.31)%,which was significantly higher than that(4.40±0.32)% in the control group(t=-11.587,P=0.000). Conclusion KM mice models of T2DM were successfully established after high-calorie diet and multiple administration of low-dose STZ.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Modelos Animais de Doenças , Animais , Glicemia , Diabetes Mellitus Tipo 2/diagnóstico , Dieta , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Camundongos , Distribuição Aleatória , Estreptozocina , Triglicerídeos/sangue
13.
PLoS One ; 12(7): e0181939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750064

RESUMO

Glucagon-like peptide 1 (GLP-1) is a very potent insulinotropic hormone secreted into the blood stream after eating. Thus, it has potential to be used in therapeutic treatment of diabetes. The half-life of GLP-1, however, is very short due to its rapid cleavage by dipeptidyl peptidase IV (DPP-IV). This presents a great challenge if it is to be used as a therapeutic drug. GLP-1, like many other small peptides, is commonly produced through chemical synthesis, but is limited by cost and product quantity. In order to overcome these problems, a sequence encoding a six codon-optimized tandem repeats of modified GLP-1 was constructed and expressed in the E. coli to produce a protease-resistant protein, 6×mGLP-1. The purified recombinant 6×mGLP-1, with a yield of approximately 20 mg/L, could be digested with trypsin to obtain single peptides. The single mGLP-1 peptides significantly stimulated the proliferation of a mouse pancreatic ß cell line, MIN6. The recombinant peptide also greatly improved the oral glucose tolerance test of mice, exerted a positive glucoregulatory effect, and most notably had a glucose lowering effect for as long as 16.7 hours in mice altered to create a type 2 diabetic condition and exerted a positive glucoregulatory effect in db/db mice. These results indicate that recombinant 6×mGLP-1 has great potential to be used as an effective and cost-efficient drug for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Escherichia coli/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Animais , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/isolamento & purificação , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Teste de Tolerância a Glucose , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
PLoS One ; 12(2): e0171601, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152036

RESUMO

Diabetes has become the third largest cause of death in humans worldwide. Therefore, effective treatment for this disease remains a critical issue. Glucagon-like peptide-1 (GLP-1) plays an important role in glucose homeostasis, and therefore represents a promising candidate to use for the treatment of diabetes. Native GLP-1, however, is quickly degraded in in the circulatory system; which limits its clinical application. In the present study, a chemically-synthesized, modified analogue of human GLP-1 (mGLP-1) was designed. Our analyses indicated that, relative to native GLP-1, mGLP-1 is more resistant to trypsin and pancreatin degradation. mGLP-1 promotes mouse pancreatic ß-cell proliferation by up-regulating the expression level of cyclin E, CDK2, Bcl-2 and down-regulating Bax, p21, and stimulates insulin secretion. An oral glucose tolerance test indicated that mGLP-1 significantly improved glucose tolerance in mice. Intraperitoneal injections of mGLP-1 into streptozotocin (STZ)-induced type 2 diabetic mice significantly reduced blood sugar levels and stimulated insulin secretion. Oral gavages of mGLP-1 in diabetic mice did not result in significant hypoglycemic activity.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hipoglicemiantes/uso terapêutico , Animais , Glicemia/análise , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/síntese química , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Humanos , Hipoglicemiantes/síntese química , Injeções Intraperitoneais , Insulina/metabolismo , Secreção de Insulina , Insulinoma/metabolismo , Masculino , Camundongos , Neoplasias Pancreáticas/metabolismo
15.
Protein Expr Purif ; 111: 75-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837439

RESUMO

Chymosin efficiently coagulates milk and so is widely used in commercial cheese production. Traditional chymosin production requires the slaughter of a large numbers of unweaned calves. In the present study, a full-length camel prochymosin gene was synthesized and cloned into the pPIC9K vector, which was then inserted into the yeast strain, Pichia pastoris GS115. Expression of the chymosin gene in yeast was under the control of an AOX1 inducible promoter. The yeast system produced approximately 37mg/L of recombinant enzyme under lab conditions. SDS-PAGE of the raw supernatant revealed two molecular bands, which were approximately 42kDa and 45kDa in size. The 45kDa band disappeared after treatment of the supernatant with N-glycosidase F (PNGase F), indicating that the recombinant protein was partially glycosylated. When subjected to a low pH, recombinant prochymosin was converted into mature and active chymosin. The active chymosin was capable of specifically hydrolyzing κ-casein. A pH of 5.04, and temperature range of 45-50°C, was optimum for milk clotting activity. Maximum milk clotting activity was detected with the inclusion of 20-40mM CaCl2. The recombinant enzyme was highly active and stable over a wide pH range (from 2.5 to 6.5) at 20°C for 8h. Thermostability of the recombinant enzyme was also analyzed. Pilot-scale production (300mg/L) was attained using a 5L fermenter. We demonstrated that expression of the camel chymosin gene in P. pastoris could represent an excellent system for producing active camel chymosin for potential use in the commercial production of cheese.


Assuntos
Quimosina/biossíntese , Quimosina/química , Expressão Gênica , Pichia/metabolismo , Animais , Camelus , Quimosina/genética , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
BMC Biotechnol ; 14: 74, 2014 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25106436

RESUMO

BACKGROUND: Healing of burns is a complex process and very few effective treatments exist to facilitate the burn recovery process. Human acidic fibroblast growth factor 1 (FGF-1) plays an important role in a variety of biological processes, including angiogenesis, and tissue repair. Salvia miltiorrhiza is widely used in traditional Chinese medicine as an herb for the treatment of various diseases, including cardiovascular and cerebrovascular diseases, and traumatic injuries. We present that expression of FGF-1 in S. miltiorrhiza significantly accelerates the healing of burn wounds. RESULTS: The human fgf-1 gene was fused with a barley α-amylase signal peptide DNA sequence and driven by a 35S promoter for constitutive expression in transgenic S. miltiorrhiza plants. The highest yield of recombinant FGF-1 obtained from leaves of transgenic S. miltiorrhiza lines was 272 ng/fresh weight. Aqueous extracts from transgenic S. miltiorrhiza exhibited FGF-1 activity approximately 19.2-fold greater than that of the standard FGF-1. Compared to the standard FGF-1 or the extracts obtained from non-transgenic plants, it stimulated proliferation of Balb/c 3 T3 mouse fibroblast cells assessed with the standard MTT assay and promoted angiogenesis in the chicken embryo chorioallantoic membrane (CAM) assay. Topical application of the extract significantly accelerated the burn wound healing process. CONCLUSIONS: The product appears to retain the biological activity of both FGF-1 as well as the medicinal properties of the plant. The extracts from transgenic S. miltiorrhiza combines the therapeutic functions of FGF-1 and the medicinal plant, S. miltiorrhiza. Topical application of the product can reduce the costs associated with extraction, purification, and recovery.


Assuntos
Fator 1 de Crescimento de Fibroblastos/farmacologia , Salvia miltiorrhiza/metabolismo , Cicatrização/efeitos dos fármacos , Células 3T3 , Animais , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Subunidades Ribossômicas Menores de Bactérias/genética , Salvia miltiorrhiza/genética , alfa-Amilases/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-24416067

RESUMO

Earthworms have been used as a traditional medicine in China, Japan, and other Far East countries for thousands of years. Oral administration of dry earthworm powder is considered as a potent and effective supplement for supporting healthy blood circulation. Lumbrokinases are a group of enzymes that were isolated and purified from different species of earthworms. These enzymes are recognized as fibrinolytic agents that can be used to treat various conditions associated with thrombosis. Many lumbrokinase (LK) genes have been cloned and characterized. Advances in genetic technology have provided the ability to produce recombinant LK and have made it feasible to purify a single lumbrokinase enzyme for potential antithrombotic application. In this review, we focus on expression systems that can be used for lumbrokinase production. In particular, the advantages of using a transgenic plant system to produce edible lumbrokinase are described.

18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 29(2): 328-31, 2012 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-22616184

RESUMO

In order to increase the expression level of target gene and to simplify the purifying process of separation and purification, we performed the transgenetic research of antigen VP7 gene into peanut via Agrobacterium tumefaciens. The plant binary expression vector is pBOG3VP7 harboring fusion gene oleosin-vp7, which is promoted by ole-promoter. Cotyledon nodes were used as transformation recipients. Transformed individuals were obtained through selection on medium containing 125 mg L-1 Kan. Integration of transgenes was assessed by PCR amplification and PCR-Southern blot hybridization. Taking pBOG3VP7 plasmid as positive control, non-transformed peanut as negative control. 6 plants among 11 plants grown up through seletion medium were detected by PCR and the rate of positive plants is 54.5%. PCR positive plants were further analysed by PCR-Southern blot hybridization. The results showed that 3 plants have DNA bloting bands. The results also showed that the foreign gene was integrated into genome of transformed peanuts. Elevated expression of rotavirus VP7 antigen in transgenic peanuts was a critical factor in the development of efficient and cheap plant oral vaccine.


Assuntos
Agrobacterium tumefaciens/genética , Antígenos Virais/genética , Arachis/genética , Proteínas do Capsídeo/genética , Rotavirus/imunologia , Transformação Genética , Antígenos Virais/biossíntese , Arachis/metabolismo , Proteínas do Capsídeo/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rotavirus/genética , Vacinas Sintéticas
19.
PLoS One ; 7(12): e53110, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300872

RESUMO

A lumbrokinase gene encoding a blood-clot dissolving protein was cloned from earthworm (Eisenia fetida) by RT-PCR amplification. The gene designated as CST1 (GenBank No. AY840996) was sequence analyzed. The cDNA consists of 888 bp with an open reading frame of 729 bp, which encodes 242 amino acid residues. Multiple sequence alignments revealed that CST1 shares similarities and conserved amino acids with other reported lumbrokinases. The amino acid sequence of CST1 exhibits structural features similar to those found in other serine proteases, including human tissue-type (tPA), urokinase (uPA), and vampire bat (DSPAα1) plasminogen activators. CST1 has a conserved catalytic triad, found in the active sites of protease enzymes, which are important residues involved in polypeptide catalysis. CST1 was expressed as inclusion bodies in Escherichia coli BL21(DE3). The molecular mass of recombinant CST1 (rCST) was 25 kDa as estimated by SDS-PAGE, and further confirmed by Western Blot analysis. His-tagged rCST1 was purified and renatured using nickel-chelating resin with a recovery rate of 50% and a purity of 95%. The purified, renatured rCST1 showed fibrinolytic activity evaluated by both a fibrin plate and a blood clot lysis assay. rCST1 degraded fibrin on the fibrin plate. A significant percentage (65.7%) of blood clot lysis was observed when blood clot was treated with 80 mg/mL of rCST1 in vitro. The antithrombotic activity of rCST1 was 912 units/mg calculated by comparison with the activity of a lumbrokinase standard. These findings indicate that rCST1 has potential as a potent blood-clot treatment. Therefore, the expression and purification of a single lumbrokinase represents an important improvement in the use of lumbrokinases.


Assuntos
Endopeptidases/genética , Oligoquetos/genética , Animais , Clonagem Molecular , Fibrina/genética , Fibrina/metabolismo , Dados de Sequência Molecular , Oligoquetos/enzimologia , Alinhamento de Sequência
20.
Sci China Life Sci ; 54(6): 520-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21706412

RESUMO

Lysozyme is an enzyme that is essential for protection against bacterial infections. In this study, a T4 lysozyme gene was cloned into the yeast expression vector pPIC9K under the control of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP). A Hansenula polymorpha-derived ribosomal DNA (rDNA)-targeting element was inserted into the expression vector and was critical for stable DNA integration into the H. polymorpha chromosome. Recombinant T4 lysozyme was successfully expressed in the yeast H. polymorpha A16; 0.49 g L(-1) secreted recombinant T4 lysozyme was obtained 72 h after incubation in culture broth that had an initial pH of 6.0. Recombinant T4 lysozyme showed lytic activity against the cell walls of the gram positive bacteria, Micrococcus lysodeikticus, and the gram negative bacteria Xanthomonas campestris pv. malvacearum and Xanthomonas oryzae pv. oryzae. The zone of inhibition assay was used to evaluate antimicrobial activity. Mass spectrometry showed the N-terminal sequence of recombinant T4 lysozyme was identical to that of the native enzyme. SDS-PAGE indicated that the molecular mass of recombinant T4 lysozyme was 18.7 kD which corresponds to a monomer of the native enzyme. SDS-PAGE without 0.2 mol L(-1) dithiothreitol treatment detected two bands (15 and 31 kD) suggesting that some recombinant T4 lysozyme formed inter- and intra-molecular disulfide bonds which resulted in loss of enzyme activity.


Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas Fúngicas/metabolismo , Muramidase/metabolismo , Pichia/enzimologia , Animais , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Dissulfetos/química , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Muramidase/química , Muramidase/genética , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...